0-ALGEBRA TOOL BOX

In this lecture, we'll cover some of the common skills needed to be successful in an algebra course. These skills are as follows:

- Simplifying expressions
- Solving equations
- Dealing with exponents
- Dealing with roots and radicals

Simplifying Expressions

In algebra, an expression is simply a mathematical statement that doesn't equal anything yet. The following statements are algebraic expressions:

$$x+3$$
$$x+3y+5$$
$$2x-3y+6z-11$$

We begin our toolbox by taking a look at the steps needed to simplify an expression. Basically, this means getting the expression into the simplest form possible. Let's simply the following expression:

$$2x + 5x - 11$$

In this expression, there are two x-terms. We call them x-terms because they both 2x and 5x include the variable x in them. The numbers in front of the x are referred to as coefficients. By the way, when you see something like 2x, it means that 2 is multiplied by x. To simplify this expression, we would add 2x and 5x to get 7x. Our expression becomes ...

7x - 11

And that's it, we've simplified 2x + 5x - 11 to get 7x - 11. Notice that we did not write this like 2x + 5x - 11 = 7x - 11 because we are only dealing with expressions and not equations at this point. Let's do another one with more moving parts. Simplify the following expression:

$$3x^2y + 7xy^2 + 6x^2y - 4xy^2 - 5xy$$

In this expression, we have some x^2y terms, some xy^2 terms and an xy term. Let's rearrange things and color-code the *like terms* in this expression.

$$3x^2y + 6x^2y + 7xy^2 - 4xy^2 - 5xy$$

Now we can perform the indicated operations involving the like terms in this expression to get the following:

$9x^2y + 3xy^2 - 5xy$

Therefore, $3x^2y + 7xy^2 + 6x^2y - 4xy^2 - 5xy$ simplified becomes $9x^2y + 3xy^2 - 5xy$.

There are times when it is necessary to move some parentheses out of the way to simplify an expression.

Consider how you might simplify the following:	(3x - y + 1) + (5x + 2y - 3)
First, we'll drop the parentheses:	3x - y + 1 + 5x + 2y - 3
Now, collect the like terms (they've been colored):	3x + 5x - y + 2y + 1 - 3
Perform the operations on the like terms:	8x + y - 2

Therefore, the expression (3x - y + 1) + (5x + 2y - 3) simplified becomes 8x + y - 2.

When there is a number sitting just outside of a parentheses, it means that the number is to be multiplied by everything in that parentheses.

Simplify the following expression:	-3(x - 2y)
Multiply -3 by everything within the parentheses:	-3(x) + (-3)(-2y)
Complete the operations	-3x + 6y

Therefore, the expression -3(x - 2y) simplified becomes -3x + 6y.

This process uses the **distributive property** which states that a(b + c) = ab + ac.

Simply the following expression:	2(3x+5y) - (x+2y)
Distribute the 2 and -1 as required:	2(3x) + 2(5y) - (x) - (2y)
Perform the necessary multiplication:	6x + 10y - x - 2y
Collect like terms:	6x - x + 10y - 2y
Perform the necessary operations:	6x + 8y

Therefore, the expression 2(3x + 5y) - (x + 2y) simplified becomes 6x + 8y.

Solving Equations

Algebra has the well earned reputation for being the course where you learn how to solve for x. The variable x would normally be a component of some kind of equation where two expressions equal each other. There are only four properties of equations that you need to know to learn how to solve them.

- 1. Addition Property Adding the same number to both sides of an equation gives an equivalent equation. For example, x 5 = 2 is the same as x 5 + 5 = 2 + 5 or x = 7
- 2. Subtraction Property Subtracting the same number to both sides of an equation gives an equivalent equation. For example, z + 15 = -2 is the same as z + 15 15 = -2 15 or z = -17
- 3. Multiplication Property Multiplying both sides of an equation by the same number gives an equivalent equation. For example, y/6 = 5 is the same as 6(y/6) = 6(5) or y = 30
- 4. **Division Property** Dividing both sides of an equation by the same number gives an equivalent equation. For example, 7x = -49 is the same as 7x/7 = -49/7 or x = -7

Let's put these rules to the test.

Solve for x in the following equation:	3x - 2 = 4 - 7x
Add 2 to both sides:	3x - 2 + 2 = 4 - 7x + 2
This gives:	3x = 6 - 7x
Now, add 7x to both sides:	3x + 7x = 6 - 7x + 7x
This gives:	10x = 6
Divide both sides by 10:	10x/10 = 6/10
Now, we have our solution:	x = 6/10 = 0.6
Let's try another one with a lot more moving parts!	
Solve for x in the following equation:	3(4x - 3) = 2(6 + x)
Apply the distributive property:	3(4x) - 3(3) = 2(6) + 2x
Perform the required operations:	12x - 9 = 12 + 2x
Add 9 to both sides:	12x - 9 + 9 = 12 + 2x + 9
Perform required operations:	12x = 21 + 2x
Subtract 2x from both sides:	12x - 2x = 21 + 2x - 2x

Perform required operations:	10x = 21
Divide both sides by 10:	10x/10 = 21/10
Perform the final operation to get the solution:	x = 21/10 = 2.1

Dealing with Exponents

An exponent is the number that represents the power to which you've raised a specific number or variable. For example, in 2^2 the 2 is the exponent (i.e. we are raising 2 to the power of 2). In x^3 , 3 is the exponent (i.e. we are raising x to the power of 3). When simplifying expressions, or solving equations, it will occasionally be necessary to use one or more of the following properties of exponents:

For all real numbers a and b and positive integers, m and n, the following apply:

Law of Product:	$a^m a^n = a^{m+n}$
Example:	$a^5a^2 = a^{5+2} = a^7$
Law of Quotient:	$\frac{a^m}{a^n} = a^{m-n}$
Example:	$\frac{a^5}{a^2} = a^{5-2} = a^3$
Law of Zero Exponent:	$a^{0} = 1$
Example:	$5^0 = 1$
Law of Negative Exponent:	$a^{-m} = \frac{1}{a^m}$
Example:	$a^{-3} = \frac{1}{a^3}$
Law of Power of a Power:	$(a^m)^n = a^{mn}$
Example:	$(a^5)^2 = a^{5 \cdot 2} = a^{10}$
Law of Power of a Product:	$(ab)^m = a^m b^m$
Example:	$(ab)^3 = a^3b^3$

Law of Power of a Quotient: $\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$

Example:
$$\left(\frac{a}{b}\right)^3 = \frac{a^3}{b^3}$$

Let's work some examples:

Evaluate: $\frac{5^6}{5^4}$

Solution:
$$\frac{5^6}{5^4} = 5^{6-4} = 5^2 = 25$$

Simplify: $\frac{y^2}{y^5}$

Solution:
$$\frac{y^2}{y^5} = y^{2-5} = y^{-3} = \frac{1}{y^3}$$

Simplify: $(3xy)^3$

Solution:
$$(3xy)^3 = 3^3x^3y^3 = 27x^3y^3$$

Simplify: $3^{15-2m}3^{2m}$

Solution:
$$3^{15-2m}3^{2m} = 3^{15-2m+2m} = 3^{15}$$

Dealing with roots and radicals

If you have a square with each side length a, then the area of the square is $a \cdot a = a^2$ units. Therefore the length of any side of the square can be represented as the *square root* of a^2 shown as follows: $\sqrt{a^2} = a$. Generally, we can represent the n^{th} root of some number a as $\sqrt[n]{a}$ where the symbol $\sqrt{}$ is called the *radical* and n is the *index of the radical*, and a is the *radicand*. Here are the properties of roots and radicals:

- If *a* is a positive number and *n* is even, there are *two real* n^{th} roots of a, $\sqrt[n]{a}$ and $-\sqrt[n]{a}$.
 - Example: $\sqrt[4]{81} = 3$ because $3^4 = 81$
- If *a* is a negative number and *n* is even, there is *no real nth root* of *a*.
 - Example: $\sqrt[4]{-81} = undefined$ because $3^4 = 81$ and $(-3)^4 = 81$
 - Not a real number

- If a is a real number and n is odd, then $\sqrt[n]{a^n} = a$.
 - Example: $\sqrt[3]{(-2)^3} = -2$ or $\sqrt[3]{-8} = -2$

• If *a* is a real number and *n* is even, then
$$\sqrt[n]{a^n} = |a|$$
.
• Example: $\sqrt[10]{2^{10}} = 2$

• If
$$\sqrt[n]{a}$$
 and $\sqrt[n]{b}$ are real numbers, then $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$
 \circ Example: $\sqrt[3]{8} \cdot \sqrt[3]{8} = \sqrt[3]{8 \cdot 8} = \sqrt[3]{64} = 4$

• If
$$\sqrt[n]{a}$$
 and $\sqrt[n]{b}$ are real numbers, then $\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}}$
• Example: $\frac{\sqrt[3]{64}}{\sqrt[3]{8}} = \sqrt[3]{\frac{64}{8}} = \sqrt[3]{8} = 2$

It is also possible to represent expressions involving radicals as expressions with fractional exponents.

Here's the general rule for rational exponents: $\sqrt[n]{a} = a^{\frac{1}{n}}$

For example:
$$a^{\frac{1}{2}} = \sqrt{a}$$
 so it follows that $(a^{\frac{1}{2}})^2 = a$ for $a \ge 0$
Example: $\sqrt[3]{27} = 27^{\frac{1}{3}} = 3$

Write the following expressions with exponents rather an radicals:

$$\sqrt[3]{x^2} = x^{\frac{2}{3}}$$

$$\sqrt{(3xy)^5} = (3xy)^{\frac{5}{2}}$$

Simplify the expression: $\sqrt[3]{x^6y^5}$

Solution:
$$\sqrt[3]{x^6y^5} = (x^6y^5)^{\frac{1}{3}} = x^{\frac{6}{3}}y^{\frac{5}{3}} = x^2y^{\frac{3}{3}}y^{\frac{2}{3}} = x^2y^{\sqrt[3]{y^2}}y^{\frac{2}{3}}$$

Inequalities

Up till this point, we've been dealing primarily with linear equations. In general, a linear equation is a function where we can express one variable in terms of another such as the equation of a line: y = mx + b. In this case, there is one unique solution y for every value of x. Now, let's briefly explore the subject of inequalities. As it sounds, an inequality is a function where there is a conditional relationship that must be considered when finding the solution. The typical conditional relationships are as follows:

Greater than	>
Less than	<
Greater than or equal to	>
Less than or equal to	<

The statement 4x + 3 < 7x - 6 is a linear inequality where the value of x that satisfies the inequality forms a solution set for the inequality. To solve an inequality, you can employ the same algebraic tools you would to solve a linear equation. For example...

$$4x + 3 < 7x - 6$$

$$4x - 7x < -6 - 3$$

$$-3x < -9$$

$$x > 3$$

So, the solution set to 4x + 3 < 7x - 6 is x > 3. Notice that when we divide by -3 on both sides, it requires that we flip the inequality sign from < to >. Below, we see the graph of 4x + 3 < 7x - 6 showing that the solution is all x values to the right of the point (3, 0). We can represent this solution as x > 3 or in interval notation as $(3, \infty)$ meaning that x can be anything greater than 3.

Let's consider another example.

 $7x \ge 8 + 6x$ $7x - 6x \ge 8$ $x \ge 8$

The solution set for $7x \ge 8 + 6x$ is $x \ge 8$ which can also be represented in interval notation as $[8, \infty)$. In this format, the bracket [implies that x can equal 8 and any value greater than 8. This is shown in the graph below.

The following table provides a comparison between the symbols used in inequality notation and interval notation.

Interval Notation	Inequality Notation	Meaning
(a, ∞)	x > a	x is greater than a
[a, ∞)	$x \ge a$	x is greater than or equal to a
(-∞, b)	x < b	x is less than b
(-∞, b]	x <u>≤</u> b	x is less than or equal to b
(a, b)	a < x < b	x is between a and b
[a, b)	a <u>≤</u> x < b	x can equal a and is between a and b
(a, b]	$a < x \leq b$	x is between a and b and can equal b
[a, b]	$a \leq x \leq b$	x is between a and b and includes a and b

Example Problem: A cat's health is at risk when the body temperature is above 104°F or higher. What temperature reading in Celsius would indicate that our cat's health is at risk? Recall that the $F = \frac{9}{5}C + 32$ is the formula that relates Fahrenheit to Celsius.

Solution: The problem states that a cat's health is at risk when $F \ge 104$. Substituting this value into our temperature formula above, we get the following:

$$\frac{9}{5}C + 32 \ge 104$$

Solving for C, we get the following:

$$\frac{9}{5}C + 32 \ge 104$$
$$\frac{9}{5}C \ge 104 - 32$$
$$\frac{9}{5}C \ge 72$$
$$5 \times \frac{9}{5}C \ge 5 \times 72$$
$$9C \ge 360$$
$$C \ge \frac{360}{9}$$
$$C \ge 40$$

Therefore, a cat's health is at risk when body temperature is at or above 40°C.

Example Problem: During the summer of 2011, Dallas, Texas experienced 40 consecutive days where the temperature was at least 108°F. On many of these days, the combination of humidity and temperature made it feel hotter than the actual air temperature. When the temperature is 100°F, the heat index A depends upon the percentage humidity h (expressed as a decimal) by the following formula:

$$A = 90.2 + 41.3h$$

What would be the range of humidity levels that would result in a heat index of at least 108°F?

Solution: If the heat index is at least 108°F, the inequality we need to solve would be as follows:

$$A \ge 108$$

90.2 + 41.3h ≥ 108
41.3h ≥ 108 - 90.2
41.3h ≥ 108 - 90.2
41.3h ≥ 17.8
h ≥ 17.8/41.3
h ≥ 0.431

Therefore, humidity levels greater than or equal to 43.1% have the potential to result in a heat index of 108°F. Since we can not have more than 100% humidity, that means humidity levels between 43.1% and 100% can produce heat indices of 108°F. This result can also be expressed as a double inequality like the following: $0.431 \le h \le 1.00$