5- EXPONENTIAL AND LOGARITHMIC FUNCTIONS

An exponential function is any mathematical function that can be expressed in the following form:

$$f(x) = ab^x$$

In this format, a is a constant and is typically the initial value of the function when x = 0. Recall that anything raised to the power of zero equals 1, so $f(0) = ab^0 = a(1) = a$. The value b is the base, and it is always greater than zero (b > 0). The variable is x and it represents the exponent of the function.

Example: Evaluate $f(x) = 2(10)^x$ when x = 2.

Solution:
$$f(2) = 2(10)^2 = 2(100) = 200$$

Example: Evaluate $f(x) = 2(10)^{(x-1)}$ when x = 2.

Solution:
$$f(2) = 2(10)^{(2-1)} = 2(10)^{1} = 2(10) = 20$$

Exponential Growth

An exponential function can be used to model growth for a wide range of phenomena. In an exponential growth function, the base (1+r) is always greater than 1 and a > 0. Exponential growth functions follow this format:

$$f(x) = a(1+r)^x$$

In this formula, r represents the rate of growth.

Example: In 2020, the population of rabbits on Hop Island was estimated to be 205. If the annual rabbit population grows 20%, estimate the rabbit population on the island in 2030.

Solution: Our beginning population is a=205, and our growth rate is 20% which will need to be expressed as a decimal in the formula so r=0.2. Additionally, we are estimating the population after 10 years, so x=10.

$$f(10) = 205(1 + .2)^{10} = 205(1.2)^{10} = 1269.3$$

We'll go ahead and round this result to 1269 because we don't want partial rabbits. Therefore, our estimated rabbit population on Hop Island in 2030 will be 1269.

The graph shows what $f(x) = 205(1.2)^x$ looks like. Notice that the y-intercept is the point (0, 205) and that it is asymptotic with the x-axis.

The red line represents the function $f(x) = 5^x$ and the blue line represents the function $f(x) = 5^{-x}$.

Notice that the blue line is the reflection of the red line about the y-axis.

The red line represents an exponential growth function. The blue represents an exponential decay function.

Exponential Decay

An exponential function can be used to model decay for a wide range of phenomena. Exponential decay functions follow this format:

$$f(x) = a(1-r)^x$$

In this exponential decay function, the base (1-r) is always less than 1, a > 0, and r represents the rate of decay.

Another option is for the exponent to be negative. In that case, the exponential decay function will follow this format:

$$f(x) = ab^{-x}$$

In this version of the exponential decay function, b > 1 and a > 0.

Example: An adult Saguaro cactus can store up to 1500 gallons of water. During extreme dry periods, the Saguaro can lose up to $\frac{2}{3}$ of this stored water and still survive. The rate at which stored water is used depends upon a range of environmental conditions. If a particular adult Saguaro cactus uses 5% of its stored water monthly during an extremely long hot drought, estimate the amount of stored water that will remain after 6 months?

Solution: We need to set up our exponential decay function with the provided parameters. In this case, we know that our initial amount of water is 1500 gallons, so a = 1500. The rate at which water is used will be r = 0.05. Here's our exponential decay function:

$$f(x) = 1500(1 - 0.05)^{x} = 1500(0.95)^{x}$$

Now we are ready to estimate how much water will remain stored in the cactus after 6 months. To do this we evaluate f(6).

$$f(6) = 1500(0.95)^6 = 1102.64 \ gallons$$

Here's the graph of our exponential decay function $f(x) = 1500(0.95)^x$ which models water usage within an adult Saguaro cactus.

The Number e (Euler's Number)

There are many application areas in the sciences and business that are modeled by exponential functions with the base e. The number e is an irrational number that approximately equals:

$$e = 2.718281828...$$

In the graph below, the red line represents $f(x)=2^x$ and the green line represents $f(x)=3^x$. The graph of $f(x)=e^x$ is between these functions and is represented by the purple line.

A typical exponential function base e will follow this format: $f(x) = e^{rx}$

- If r > 1, then the function base e will represent exponential growth.
- If 0 < r < 1, then the function base e will represent exponential decay.

Example: Evaluate the function $f(x) = 2e^{5x}$ when x = 2.

Solution:
$$f(x) = 2e^{5x} = 2e^{5(2)} = 2e^{10} = 44052.93$$

It is highly recommended that you use a scientific calculator for these computations. Here's what this solution would look like using https://www.desmos.com/scientific.

2e ⁵⁽²⁾)						= 44 052	2.93159
main	abc	func		DEG	K	2	clear all	£
a^2	a^b	a	7	8	9	÷	%	$\frac{a}{b}$
$\sqrt{}$	<i>n</i> √	π	4	5	6	×	-	→
sin	cos	tan	1	2	3	_		Ø
()	,	0		ans	+	•	_

The typical format for an exponential decay formula base e will be $f(x) = ae^{-rx}$

For example, an exponential decay function is used to model the amount of radioactive material remaining after a period of time. Carbon-14 decays over time with the amount remaining after t years represented by the following function:

$$f(t) = y_0 e^{-0.000121t}$$

Where y_0 is the initial amount of carbon-14 material and r = 0.000121 is the rate of change per year.

Example: If the original amount of carbon-14 present in an artifact is 100 grams, how much remains after 2000 years?

Solution:
$$f(2000) = 100e^{-0.000121(2000)} = 78.51 \, grams$$

Here's the solution using https://www.desmos.com/scientific.

$100e^-$	-0.00012	1(2000)					= 78.50	561776
main	abc	func		DEG	K	3	clear all	F
a^2	a^b	<i>a</i>	7	8	9	÷	%	$\frac{a}{b}$
$\sqrt{}$	<i>n</i> √	π	4	5	6	×	←	-
sin	cos	tan	1	2	3	-		Ø
()	,	0		ans	+	•	_

Let's do another one.

Example: What percentage of the original amount of carbon-14 remains after 4500 years?

Solution: We know that y_o is the initial amount of carbon-14 material, so plugging t = 4500 into our formula gives $f(4500) = y_o e^{-0.000121(4500)} = 0.57y_o$.

Therefore, 57% of the carbon-14 will remain after 4500 years.

Incidentally, the half-life for carbon-14 is 5730 years which means that after this time only 50% of the original carbon-14 remains.

Logarithmic Functions

Logarithmic functions have the following format: $f(x) = log_b x$

Logarithmic functions are the inverse of exponential functions. In general, a function is represented as y = f(x) and its inverse function is represented as x = f(y). It is important to note that a function and its inverse function must have a one-to-one correspondence between the independent and dependent variables defining the function. The inverse function for a logarithmic function is an exponential function. This is shown graphically below:

The green line is the graph of $f(x) = \ln x$. This function is called the *natural log of x* and it is base e.

The blue line is the function $f(x) = e^x$ which is the inverse function for $f(x) = \ln x$.

Since $f(x) = \ln x$ and $f(x) = e^x$ are inverses of each other, their graphs are symmetrical about the line y = x represented by the red dotted line.

Therefore, since logarithmic functions have the format $y = log_b x$, the corresponding exponential form will be $x = b^y$, and its inverse will have the format $y = b^x$.

These are referred to as the logarithmic forms and exponential forms respectively as demonstrated by the examples in the following table:

Logarithmic Form	Exponential Form
$y = \log_2 x$	$x = 2^y$
$2 = \log_{10} 100$	$10^2 = 100$
$2 = \log_3 9$	$3^2 = 9$

Example: Evaluate the function $f(x) = log_{10} x$ when x = 4.

To find f(4), we can input this into a calculator to quickly find the solution. Scientific calculators come with a log function button that is base 10 by default.

$$f(4) = log_{10}4 = 0.6020599913$$

Here's the solution using https://www.desmos.com/scientific. The log button is found on the **func** menu.

$\log(4)$)						= 0.6020	599913
main	abc	func		DEG	K	3	clear all	F
a^2	a^b	<i>a</i>	7	8	9	÷	%	$\frac{a}{b}$
\checkmark	<i>n</i> √	π	4	5	6	×	←	
sin	cos	tan	1	2	3	_		Ø
()	,	0		ans	+		_

So, our logarithmic form works out to be $\log_{10}4 = 0.6020599913$. The exponential form for this would be $10^{0.6020599913} = 4$ which we can verify with the calculator as shown below:

10 ^{0.60}	2059991	.3						= 4
main	abc	func		DEG	K-	3	clear all	F
a^2	a^b	a	7	8	9	÷	%	$\frac{a}{b}$
\checkmark	<i>n</i> √	π	4	5	6	×	←	→
sin	cos	tan	1	2	3	_		6 3
()	,	0		ans	+		_

Example: Evaluate the function $f(x) = \ln x$ when x = 22.

Another common logarithm is the *natural logarithm* which is a logarithm based e. This is defined as follows: $log_e x = ln x$. It is handy to know that all scientific calculators come with an ln function button.

So, let's use https://www.desmos.com/scientific to evaluate f(22) = ln 22. Here's the solution:

ln(22))						= 3.091	042453
main	abc	func		DEG	K.	3	clear all	F
a^2	a^b	a	7	8	9	÷	%	$\frac{a}{b}$
\checkmark	<i>n</i> √	π	4	5	6	×	-	—
sin	cos	tan	1	2	3	_		Ø
()	,	0		ans	+		_

Therefore, $f(22) = \ln 22 = 3.09104253$. The exponential form would be $e^{3.09104253} = 22$ as verified below:

e ^{3.091042}	253			=2	2.00000169
main	abc func	DEG	~	clear	all 🔑
sin	cos	tan	a^b	$\sqrt{}$	<i>n</i> √
\sin^{-1}	\cos^{-1}	tan ⁻¹	e ^x	abs	round
mean	stdev	stdevp	ln	log	Ø
nPr	nCr	!	e	π	—

An interesting property of logarithmic functions is the following:

$$f(x) = \log x^n = n \log x$$

This is called the **power property** of logarithms. Let's put this property to use in the following example:

Example: Evaluate the function $f(x) = \log x^4$ when x = 10. Round your answer to the nearest hundredths.

Solution:
$$f(10) = log \ 10^4 = 4 \ log 10 = 4(1) = 4$$

This solution employed the following basic property of logarithms: $log_b b = I$

The following list contains some of the basic logarithmic properties (for b > 0, $b \ne 1$):

- $log_b b = 1$
- $log_b I = 0$
- $log_b b^x = x$

The following list contains some useful operational properties of logarithms (for b > 0, $b \ne 1$).

• Product Property: log (MN) = log M + log N

• Quotient Property: $log(\frac{M}{N}) = log M - log N$

• Product Property: $log M^n = n log M$

A Logarithmic Function Application: pH

The acidity or basicity of a solution depends upon the concentration of free hydrogen ions [H+] in the solution. The pH scale is a logarithmic scale that represents a simple way to represent the hydrogen ion concentration of a solution. The pH of a solution is given by the following formula:

$$pH = -log[H+]$$

Example: Find the pH value of beer for which the hydrogen concentration is [H+] = 0.0000631.

Solution: pH = -log(0.0000631) = 4.199970641. Therefore, the pH of this beer is 4.2.

Example: The pH value of eggs is 7.79. Find the hydrogen ion concentration for eggs.

Solution: Since the logarithmic form is $7.79 = -\log[H+]$, it follows that the exponential form will give the solution $[H+] = 10^{-7.79} = 0.00000001628101$